New Insulins and Insulin Delivery Systems

Bruce W. Bode, MD, FACE Atlanta Diabetes Associates Atlanta, Georgia

Goals of Intensive Diabetes Management

Near-normal glycemia - HbA1c less than 6.5 to 7.0% Avoid short-term crisis Hypoglycemia - Hyperglycemia – DKA Minimize long-term complications Improve QOL

Relative Risk of Progression of Diabetic Complications by Mean HbA1C Based on DCCT Data

Skyler, Endo Met CI N Am 1996

HbA_{1c}

HbA1c and Plasma Glucose

- 26,056 data points (A1c and 7-point glucose profiles) from the DCCT
- Mean plasma glucose = $(A1c \times 35.6) 77.3$
- Post-lunch, pre-dinner, post-dinner, and bedtime correlated better with A1c than fasting, post-breakfast, or pre-lunch

Rohlfing et al, Diabetes Care 25 (2) Feb 2002

Emerging Concepts

The Importance of Controlling Postprandial Glucose

ACE / AACE Targets for Glycemic Control

HbA_{1c}

< 6.5 %

Fasting/preprandial glucose < 110 mg/dL

Postprandial glucose

< 140 mg/dL

ACE / AACE Consensus Conference, Washington DC August 2001

Insulin

The most powerful agent we have to control glucose

Comparison of Human Insulins / Analogues

Insulin preparations	Onset of action	Peak	Duration of action
Regular	30–60 min	2–4 h	6–10 h
NPH/Lente	1–2 h	4–8 h	10–20 h
Ultralente	2–4 h	Unpredictable	16–20 h
Lispro/aspart	5–15 min	1–2 h	4–6 h
Glargine	1–2 h	Flat	~24 h

Short-Acting Analogs Lispro and Aspart

 Convenient administration immediately prior to meals

- Faster onset of action
- Limit postprandial hyperglycemic peaks
- Shorter duration of activity
 - Reduce late postprandial hypoglycemia
 - Frequent late postprandial hyperglycemia

Need for basal insulin replacement revealed

Short-Acting Insulin Analogs Lispro and Aspart Plasma Insulin Profiles

Heinemann, et al. Diabet Med. 1996;13:625-629; Mudaliar, et al. Diabetes Care. 1999;22:1501-1506.

Pharmacokinetic Comparison NovoLog® vs Humalog®

Lispro Mix 75/25 Pharmacodynamics

Limitations of NPH, Lente, and Ultralente

O not mimic basal insulin profile

- Variable absorption
- Pronounced peaks
- Less than 24-hour duration of action
- Cause unpredictable hypoglycemia
 - Major factor limiting insulin adjustments
 - More weight gain

Insulin Glargine A New Long-Acting Insulin Analog

10

10

1

5

5

Modifications to human insulin chain

- Substitution of glycine at position A21
- Addition of 2 arginines at position B30

GIV

Substitution

25

Extension

30

Arg Arg

20Asp

20

Gradual release from injection site

Peakless, long-lasting insulin profile

15

15

Glargine vs NPH Insulin in Type 1 Diabetes Action Profiles by Glucose Clamp

Glucose Infusion Rate

Lepore M, et al. Diabetes. 2000;49:2142-2148.

Plasma Glucose

Lepore M, et al. Diabetes. 2000;49:2142-2148.

Overall Summary: Glargine

 Insulin glargine has the following clinical benefits

- Once-daily dosing because of its prolonged duration of action and smooth, peakless timeaction profile
- Comparable or better glycemic control (FBG)
- Lower risk of nocturnal hypoglycemic events
- Safety profile similar to that of human insulin

Type 2 Diabetes ... A Progressive Disease

Over time, most patients will need insulin to control glucose

Insulin Therapy in Type 2 Diabetes Indications

- Significant hyperglycemia at presentation
- Hyperglycemia on maximal doses of oral agents
- Decompensation
 - Acute injury, stress, infection, myocardial ischemia
 - Severe hyperglycemia with ketonemia and/or ketonuria
 - Uncontrolled weight loss
 - Use of diabetogenic medications (eg, corticosteroids)
- Surgery
- Pregnancy
- Renal or hepatic disease

Mimicking Nature

The Basal/Bolus Insulin Concept

The Basal/Bolus Insulin Concept

Basal insulin

- Suppresses glucose production between meals and overnight
- 40% to 50% of daily needs
- Bolus insulin (mealtime)
 - Limits hyperglycemia after meals
 - Immediate rise and sharp peak at 1 hour
 - 10% to 20% of total daily insulin requirement at each meal

 Δ AUC from normal basal >1875 mgm/dL·hr; Est HbA1_c >8.7%

Riddle. Diabetes Care. 1990;13:676-686.

When Basal Corrected

 Δ AUC from normal basal 900 mgm/dL·hr; Est HbA1_c 7.2%

When Mealtime Hyperglycemia Corrected

 Δ AUC from normal basal 1425 mgm/dL·hr; Est HbA1_c 7.9

When Both Basal & Mealtime Hyperglycemia Corrected

 Δ AUC from normal basal 225 mgm/dL·hr; Est HbA1_c 6.4%

MIMICKING NATURE WITH INSULIN THERAPY

Over time, most patients will need both basal and mealtime insulin

to control glucose

Starting With Basal Insulin Advantages

- I injection with no mixing
- Insulin pens for increased acceptance
- Slow, safe, and simple titration
- Low dosage
- Effective improvement in glycemic control
- Limited weight gain

Starting With Basal Insulin Bedtime NPH Added to Diet

Cusi & Cunningham. Diabetes Care. 1995;18:843-851.

Treatment to Target Study: NPH vs Glargine in DM2 patients on OHA

- Add 10 units Basal insulin at bedtime (NPH or Glargine)
- Continue current oral agents
- Titrate insulin weekly to fasting BG < 100 mg/dL
 - if 100-120 mg/dL, increase 2 units
 - if 120-140 mg/dL, increase 4 units
 - if 140-160 mg/dL, increase 6 units
 - if 160-180 mg/dL, increase 8 units

Treatment to Target Study; A1C Decrease

Patients in Target (A1c < 7%)

Advancing Basal/Bolus Insulin

- Indicated when FBG acceptable but
 - HbA1c > 7% or > 6.5%
 - and/or
 - SMBG before dinner > 140 mg/dL
- Insulin options
 - To glargine or NPH, add mealtime aspart / lispro
 - To suppertime 70/30, add morning 70/30
 - Consider insulin pump therapy
- Oral agent options
 - Usually stop sulfonylurea
 - Continue metformin for weight control
 - Continue glitazone for glycemic stability?

Starting With Bolus Insulin

Combination Oral Agents

+

Mealtime Insulin

Starting With Bolus Insulin Mealtime Lispro vs NPH or Metformin Added to Sulfonylurea

Browdos, et al. Diabetes. 1999;48(suppl 1):A104.
Case #1: DM 2 on SU with infection

- 49 year old white male
- DM 2 onset age 43, wt 173 lbs, Ht 70 inches
- On glimepiride (Amaryl) 4 mg/day , HbA1c 7.3% (intolerant to metformin)
- Infection in colostomy pouch (ulcerative colitis) glucose up to 300 mg/dL plus
- SBGM 3 times per day

Case #1: DM 2 on SU with infection

- Started on MDI; starting dose 0.2 x wgt. in lbs.
- Wgt. 180 lbs which = 36 units
- Bolus dose (lispro/aspart) = 20% of starting dose at each meal, which = 7 to 8 units ac (tid)
- Basal dose (glargine) = 40% of starting dose at HS, which = 14 units at HS
- Correction bolus = (BG 100)/ SF, where SF = 1500/total daily dose; SF = 40

Initial Dosage Calculations

- **Correction Bolus**
 - "1500 Rule"
 - •insulin sensitivity factor
 - determines the estimated BG drop
 - per 1.0 unit of insulin

Davidson PC, The Insulin Pump Therapy Book: Insights from the Experts 1995, 59-71.

Glucose Correction Factor

1500 Rule says:
John Smith is on:
36 units insulin/day
1500/36= 40
1 unit lowers BG 40 mg/dl

Correction Bolus Formula

Current BG - Ideal BG Glucose Correction factor

Example:

-Current BG: 220 mg/dl

-Ideal BG: 100 mg/dl

-Glucose Correction Factor: 40 mg/dl

Case #1: DM 2 on SU with infection

Started on MDI

 Did well, average BG 138 mg/dL at 1 month and 117 mg/dL at 2 months post episode with HbA1c 6.1%

Strategies to Improve Glycemic Control: Type 2 Diabetes

 Monitor glycemic targets – Fasting and postprandial glucose, HbA_{1c}

Self-monitoring of blood glucose is essential

 Nutrition and activity are cornerstones of therapy

 Combinations of pharmacologic agents are often necessary to achieve glycemic targets

Intensive Therapy for Type 1 Diabetes

- Careful balance of food, activity, and insulin
- Daily self-monitoring BG
- Patient trained to vary insulin and food
- Define target BG levels (individualized)
- Frequent contact of patient and diabetes team
- Monitoring HbA_{1c}
- Basal / Bolus insulin regimen

Options in Insulin Therapy

Ourrent

- Multiple injections
- Insulin pump (CSII)
- Future
 - Implant (artificial pancreas)
 - Transplant (pancreas; islet cells)

Insulin Pens

Introducing InDuoTM

- The world's first combined insulin doser and blood glucose monitoring system
- A major breakthrough in Diabetes Care

InDuo[™] - Integration

<u>Feature</u>

 Combined insulin doser and blood glucose monitor

InDuo[™] - Compact Size

Feature

Compact, discreet design

<u>Benefit</u>

 Allows discreet testing and injecting anywhere, anytime

InDuo[™] - Doser Remembers

<u>Feature</u>

 Remembers amount of insulin delivered and time since last dose

<u>Benefit</u>

 Helps people inject the right amount of insulin at the right time

Variability of Insulin Absorption

CSII <2.8% Subcutaneous Injectable 10% to 52%

Pump Therapy Basal & Bolus Short-Acting Insulin

Pump Therapy Basal & Bolus Short-Acting Insulin

Pump Therapy Basal & Bolus Short-Acting Insulin

Combined with SMBG, physiologic insulin requirements can be achieved more closely

Flexibility in lifestyle

History of Pumps

PARADIGM PUMP

Paradigm. Simple. Easy.

Paradigm Pump: Advantages

-29% smaller, water resistant •Menu driven: bolus, suspend, basal, prime, utilities Reservoir based (easier to fill) Silent motor **AAA** batteries

Paradigm Pump: Advantages

Various bolus options normal, square, dual, and "easy bolus"
Enhanced memory
Enhanced safety features (low reservoir alarm, auto off, etc.)

Pump Infusion Sets

Softset QR

Silhouette

Pharmacokinetic Advantages CSII vs MDI

Uses only regular or very rapid insulin

- More predictable absorption than modified insulins (variation 3% vs 52%)
- Uses 1 injection site
 - Reduces variations in absorption due to site rotation
- Eliminates most of the subcutaneous insulin depot
- Programmable delivery simulates normal pancreatic function

Metabolic Advantages with CSII

Improved glycemic control

- Better pharmacokinetic delivery of insulin
 - Less hypoglycemia
 - Less insulin required
- Improved quality of life

Glycemic Control

CSII Reduces HbA_{1c}

Chantelau E, et al. *Diabetologia*. 1989;32:421–426; Bode BW, et al. *Diabetes Care*. 1996;19:324–327; Boland EA, et al. *Diabetes Care*. 1999;22:1779–1784; Bell DSH, et al. *Endocrine Practice*. 2000;6:357–360; Chase HP, et al. *Pediatrics*. 2001;107:351–356.

CSI Factors Affecting HbA_{1c}

• Monitoring $-HbA_{1c} = 8.3 - (0.21 \times BG \text{ per day})$ Recording 7.4 vs 7.8 Diet practiced -CHO: 7.2 **– Fixed: 7.5** -Other: 8.0 Insulin type -Lispro: 7.3 **-R:7.7**

Insulin aspart versus buffered R versus insulin lispro in CSII study:

• 146 patients in the USA; 2–25 years with Type 1 diabetes; $7\% \le HbA_{1c} \le 9\%$; previously treated with CSII for 3 months

Bode et al: Diabetes Care, March 2002

Glycemic Control with CSII

Bode, *Diabetes* 2001 ; 50(S2):A106

Self-Monitored Blood Glucose in CSII

Symptomatic or Confirmed Hypoglycaemia

Insulin aspart versus buffered R versus insulin lispro in CSII study: pump compatibility

Insulin aspartBuffered human insulinInsulin lispro

Data on file (study ANA 2024)

Case Study: 54 year old DM1 on CSII with Lipoatrophy and Insulin Antibodies

DM 1 onset age 21, 1968
CSII 1998, A1C 7.8%
Lipoatrophy with humalog 1999-2000
Changed to Velosulin BR with still lipoatrophy
Control suboptimal A1C 7.8%

Case Study: 54 year old DM1 on CSII with Lipoatrophy and Insulin Antibodies

- 7-10-01 A1C 7.8% on 28.8 units per day
- SMBG Avg BG 140, SD 118 based on 2.9 tests/day
- Insulin antibodies positive 1:32
- Changed to Novolog 1 to 1 transfer
- 10-16-01 A1C 6.5% on 20.8 units per day
- SMBG Avg 118, SD 73 based on 3.0 tests per day

DM 1 CSII Patient: Humalog to Novolog

Case Study: 54 year old DM1 on CSII with Lipoatrophy and Insulin Antibodies

2-5-02 A1C 6.3% on 20 units per day
SMBG Avg BG 104, SD 74 based on 3.1 tests/day

CSII Usage in Type 2 Patients Atlanta Diabetes Experience

Glycemic Control in Type 2 DM: CSII vs MDI in 127 patients

Raskin, *Diabetes* 2001; 50(S2):A106

DM 2 Study: CSII vs MDI

- Overall treatment satisfaction improved in the CSII group: 59% pre to 79% at 24 weeks
- 93% in the CSII group preferred the pump to their prior regiment (insulin +/- OHA)
- CSII group had less hyperglycemic episodes (3 subjects, 6 episodes vs. 11 subjects, 26 episodes in the MDI group)

CSII Reduces Hypoglycemia

Chantelau E, et al. *Diabetologia*. 1989;32:421–426; Bode BW, et al. *Diabetes Care*. 1996;19:324–327; Boland EA, et al. *Diabetes Care*. 1999;22:1779–1784; Chase HP, et al. *Pediatrics*. 2001;107:351–356.

Insulin Reduction Following CSI

* *P* <0.001

Normalization of Lifestyle

- Liberalization of diet timing & amount
- Increased control with exercise
- Output to work shifts & through lunch
- Less hassle with travel time zones
- Weight control
- Less anxiety in trying to keep on schedule

Current Continuation Rate Continuous Subcutaneous Insulin Infusion (CSII)

N = 165 Average Duration = 3.6 years Average Discontinuation <1%/yr

Bode BW, et al. Diabetes. 1998;47(suppl 1):392.

U.S. Pump Usage Total Patients Using Insulin Pumps

Pump Therapy Indications

- HbA_{1c} >7.0%
- Frequent hypoglycemia
- Dawn phenomenon
- Exercise
- Pediatrics
- Pregnancy
- Gastroparesis

- Hectic lifestyle
- Shift work
- Type 2

Marcus. Postgrad Med. 1995.

Poor Candidates for CSI

- Onwilling to comply with medical follow-up
- Unwilling to perform self blood glucose monitoring 4 times daily
- Unwilling to quantitate food intake

Current Candidate Selection

Patient Requirements

-Willing to monitor and record BG

- -Motivated to take insulin
- -Willing to quantify food intake
- -Willing to follow-up
- -Interested in extending life

Pump Therapy

Basal rate

- Continuous flow of insulin
- Takes the place of NPH or ultralente insulin

Meal boluses

- Insulin needed pre-meal
 - Pre-meal BG
 - Carbohydrates in meal
 - Activity level

What Type of Bolus Should You Give?

- 9 DM 1 patients on CSII ate pizza and coke on four consecutive Saturdays
- Dual wave bolus (70% at meal, 30% as 2-h square):
 9 mg/dl glucose rise
- Single bolus: 33 mg/dl rise
- Double bolus at -10 and 90 min: 66 mg/dl rise
- Square wave bolus over 2 hours: 80 mg/dl rise

Chase et al, Diabetes June 2001 #365

Treatment of Hypoglycemia

- Education
 - -Glucose tablets
 - -Glucagon
- Call healthcare team
 - Any hypoglycemic events requiring assistance

Treatment of Hyperglycemia

If blood glucose is above 250 mg/dl

- Take a correction bolus by pump
- Check BG again in 1 hr

If still above 250 mg/dl

- Take correction bolus by syringe
- Change infusion set and reservoir
- Check BG again in 1 hr

If BG has not decreased

- Increase correction bolus by syringe
- CALL PHYSICIAN

If HbA_{1c} is Not to Goal

Must look at:

 SMBG frequency and recording

Diet practiced

- Do they know what they are eating?
- Do they bolus for all food and snacks?

 Infusion site areas
 Are they in areas of lipohypertrophy?

• Other factors:

- Fear of low BG
- Overtreatment of low BG

Future of Diabetes Management

Improvements in Insulin & Delivery

Insulin analogs and inhaled insulin • External pumps Internal pumps Continuous glucose sensors Closed-loop systems

Pulmonary Insulin

Oral Agents + Mealtime Inhaled Insulin Effect on HbA_{1c}

Weiss, et al. *Diabetes*. 1999;48(suppl 1):A12.

Categories of Glucose Monitoring

- Non-invasive
 - Near Infrared Spectroscopy (NIR)
- Minimally-invasive (ISF)
 - Micropore sampling
 - Iontophoresis
 - Subcutaneous sensors

Cygnus GlucoWatch

- Watch Component
- Electrode Component

Cygnus GlucoWatch

- Initial calibration takes 3 hours
- Senses glucose and gives an average every 20 minutes up to 12 hours (r = 0.80 home use)
- Alarm for high, low and rapidly dropping blood sugars
- Indicated for 18 years and older

GLUCOSE MONITORING SYSTEMS -EXTERNAL

Physician Product

- Physician downloads data for retrospective analysis
- Com-Station and software packages combine data from:
 - Sensor
 - Models 508 and 507C insulin pumps
 - Traditional glucose meters

Glucose Profiles

Patient with Type 1 Diabetes

- Practicing MDI
- -HbA_{1C} of 8.5%
- Complications
 of High BG
 Renal
 Retinal
 - Neural

Pre-Meal BG Tests

Glucose Profiles

Patient with Type 1 Diabetes

- Practicing MDI
- -HbA_{1C} of 8.5%
- Complications of High BG Renal
 - Retinal Neural

• 70 Year-old white male • Type 2 DM, 15 years Ourrent Treatment: -Glucophage 500mg AM, 1000mg PM -Glynase 6mg BID -Rezulin 400mg QD

History

• HgA_{1c} increased to 8.0% from 6.5% 18 months earlier

- SMBG Average: 162 mg/dL
 - AM = 137
 - Noon = 199
 - PM = 151
 - HS = 188
- Ht= 73"; Wt= 180 lbs; BMI=23 kg/m2

CGMS done to determine best course of treatment

Modal Day

Tim e

Glucose Sensor Profile

Changes to be made

Options discussed with patient:

1. Add insulin pre-meal

2. Change Glynase to Prandin

CGMS re-done
 six weeks later

Modal Day

Reasons to Use CGMS

Olycemic control

•Reduce risk of hypoglycemic events

 Minimize risk of future hypoglycemia

GLUCOSE MONITORING SYSTEMS -Telemetry

Consumer Product

- "Real time" glucose readings
- Wireless communication from sensor to monitor
- High and low glucose alarms
- FDA panel pending

Closed-loop control using an external insulin pump and a subcutaneous glucose sensor

subcutaneous glucose sensor

Insulin infusion pump (currently MiniMed 508)

Closed-Loop Setup for Canine Studies

24-h Closed-Loop Control (diabetic canine)

Implantable Pump

 Average HbA_{1c} 7.1%
Hypoglycemic events reduce to 4 episodes per 100 pt-years

MiniMed 2007 System

Implantable Insulin Pump Placement

Implantable Insulin Pumps Indications for Use

 Diabetes out of control (frequent, rapid ρBG)
Frequent hypoglycemic episodes
Subcutaneous insulin absorption resistance
Injection or infusion site reaction

Long-Term Glucose Sensor

LONG TERM IMPLANTABLE SYSTEM

Human Clinical Trial

Source: Medical Research Group, Inc.

Combine Pump and Sensor Technology

LTSS => Long Term Sensor System ("Open Loop Control") Using an RF Telemetry Link.....

Medtronic MiniMed's Implantable Biomechanical Beta Cell

Today's Reality Open-Loop Glucose Control

LONG TERM IMPLANTABLE SYSTEM

Automatic Glucose Regulation in a Fully Pancreatectomized Canine

Summary

 Insulin remains the most powerful agent we have to control diabetes

- When used appropriately in a basal/bolus format, near-normal glycemia can be achieved
- Newer insulins and insulin delivery devices along with glucose sensors will revolutionize our care of diabetes

Conclusion

Intensive therapy is the best way to treat patients with diabetes

QUESTIONS

For a copy or viewing of these slides, contact

WWW.adaendo.com

Email: Novotalk@adaendo.com